Low Oxygen Tension Maintains Multipotency, Whereas Normoxia Increases Differentiation of Mouse Bone Marrow Stromal Cells

نویسندگان

  • Ina Berniakovich
  • Marco Giorgio
چکیده

Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O(2) regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O(2) concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC definition. In order to establish the effect of low O(2) on cellular properties, we examined BSMC cultured under hypoxic (3% O(2)) conditions. Our results demonstrate that 3% O(2) augmented proliferation of BMSC, as well as the formation of colonies in the colony-forming unit assay (CFU-A), the percentage of quiescent cells, and the expression of stemness markers Rex-1 and Oct-4, thereby suggesting an increase in the stemness of culture when exposed to hypoxia. In contrast, intrinsic differentiation processes were inhibited by 3% O(2). Overall yield of differentiation was dependent on the adjustment of O(2) tension to the specific stage of BMSC culture. Thus, we established a strategy for efficient BMSC in vitro differentiation using an initial phase of cell propagation at 3% O(2), followed by differentiation stage at 21% O(2). We also demonstrated that 3% O(2) affected BMSC differentiation in p53 and reactive oxygen species (ROS) independent pathways. Our findings can significantly contribute to the obtaining of high-quality MSC for effective cell therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of antioxidant supplementation on the total yield, oxidative stress levels, and multipotency of bone marrow-derived human mesenchymal stromal cells.

Bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the most frequently investigated cell type for potential regenerative strategies because they are relatively easy to isolate and are able to differentiate into several mesenchymal lineages. Unfortunately, during ex vivo culture, MSCs present gradual loss of differentiation potential and reduced clinical efficacy. Reactive oxyg...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

Modifying oxygen tension affects bone marrow stromal cell osteogenesis for regenerative medicine

AIM To establish a hypoxic environment for promoting osteogenesis in rat marrow stromal cells (MSCs) using osteogenic matrix cell sheets (OMCSs). METHODS Rat MSCs were cultured in osteogenic media under one of four varying oxygen conditions: Normoxia (21% O2) for 14 d (NN), normoxia for 7 d followed by hypoxia (5% O2) for 7 d (NH), hypoxia for 7 d followed by normoxia for 7 d (HN), or hypoxia...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013